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We shall examine the unsteady temperature distribution in a two- 
layer semi-space,  at point (x0, Y0) of which a concentrated, impulsive 
heat  source is located, the boundary being thermally insulated. 

The problem in question reduces to the system of equations 
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the solution of which must satisfy the initial condition 

Ti[e=o = 0, (2) 

the edge condition 

o77;1 - o, (a) 
av I~=o- 

as well as the following requirements at the medium interface: 

T1 x=o = T~ x=0' oTx i OT~I 

To obtain an exact solution of this problem, it is convenient to 
apply the method of integral tran~orms (a Laplace transformation with 
respect to the variable t ,  and a cosine and sine Fourier transformation 
with respect to the coordinates y and x, respectively). After some 
operations, the general solution of the problem may be obtained in 
the following form: 
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where 
[ ~ = t z §  Re3i> 0 ( i =  1. 2). (7) 

Without carrying out the extensive calculations to carry the solu- 
tion to simple quadratures, we shall turn to the particular case, when 
there is a source at the coordinate origin, and find the temperature 

variation law at the medium interface, 
Putting x = x 0 = Y0 = 0 in (5) and (6), and carrying out the ap- 

propriate tranfformations, we obtain 

T o = T ( O , y ,  l ) =  

= 2r.Qk, t exp 4t ] "/~ - -  l T exp L ' § 
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where 

7=k~/kt ,  u=al/~z, (9) 

and the notation 
Z 
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has been introduced, 
For Y = 1 (k l = kz = k) formula (8) has the form 

Q / 
21 �9 ~ 41 [ [ ' . , - -1  a l y ' ~ _ l ]  ' (11) 

- -  exp, ,  7, 4t ] T 0 =  2r. k i - exp [  4t ] " , - -1 =tYz 

whence, for a homogeneous medium with parameters k~ and al(y = 
= u = 1), the well-known formula 

- -  al Y21 (12 )  
T ~  4t / 

is obtained. 
Simple intuitive results describing the thermal process examined 

may be obtained by comparing the values of To and T~. We shall 

o Q5  to (~ ZO o 0.5 to ~,5 q 

Fig. 1. Graphs of reduced medium interface temperature with a) y= 0.5 and 
b) 2, and the parameter v equal to 1) 0,125; 2) 0.25 ; 3) 0.5 ; 4) 1; 5) 2; 6) 4; 

7)8. 
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Introduce the function ~.(~) to describe their ratio: 

W (~) = To/Tlo, ~ = V"~-Zy/2 ~ (18) 

Examination shows that when 0 = 0 

~F (0) = 210 + ~), (14) 

i.e., it is independent of/~, and when ~ -~ r the behavior of $(n) is 
determined by the asymptotic expression 

, -  ~ z- (15) 

(7. ,~ ~= I). 

Thus) for a given value of the parameter y and various values of 
the parameter/~, the function ~(~) changes from the same value 2/(1 + 
+ y), but when 7 / ~  ~o it behaves in a substantially different way, 
depending on the values of the parameter v; namely,  when v > 1 it 
grows without bound, while when v < 1 it tends to zero (when v = 1 

*(7) -= 4(0)). 
The figure presents graphs of the function ~(~), drawn on the  basis 

of calculations according to formulas (8) -(13) carried out on a"  Minsk- 2" 
electronic computer.  

NOTATION 

T-- temperature;  t - - t ime;  x, y--rectangular  coordinates; Q - v o l u m e  
density of heat  source; a - rec iproca l  of thermai  dfffusivity; k - t h e rm a l  
conductivity; 5--delta function. 
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